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ABSTRACT
This paper reports a novel method for fully automated seg-
mentation of rodent brain volume by extending the robust ac-
tive shape models to incorporate an automatic prior shape se-
lection process. This automatic prior shape selection process
using support vector machines provides an automatic shape
initialization method for further segmentation of rodent brain
structures such as Cerebellum, Neocortex, Corpus Callosum,
External Capsule, Caudate Putamen, Hippocampus and Ven-
tricles with the robust active shape model framework in mag-
netic resonance images (MRI). The mean successful rate of
this classification method shows 92.2% accuracy compared
to the expert-defined ground truth. We also demonstrate the
very promising segmentation results of the robust active shape
model framework in rodent brain volume.

Index Terms— Biomedical image processing, Image seg-
mentation, Learning systems, Robust active shape model

1. INTRODUCTION

Segmentation of 3D brain images is very important to ad-
vance knowledge about relationships between anatomy and
mental diseases in brains [1]. Volumetric analysis of ro-
dent brain structures, such as, cerebellum, caudate putamen,
hippocampus, fibria, external capsule and neocortex are im-
portant in studying the structural changes occuring in specific
brain regions as a function of development, trauma or neu-
rodegeneration [2]. Volumetric analysis of gray matter (GM),
white matter (WM) and cerebrospinal fluid (CSF) is used
to characterize morphological differences between subjects
in psychiatric disease including schizophrenia, epilepsy or
Alzheimer’s disease [3, 4].
Currently, many semi-automatic and automatic segmenta-

tion methods in clinical studies have been developed [5, 6, 7,
8, 9], since manual segmentation of brain images are time-
consuming and lack the reproducibility because of a large
intra-observer and inter-observer variability. Pitiot et al. de-
veloped an expert-knowledgeguided segmentation system for

anatomical structures in MRI which uses medical expertise in
the form of implicit or explicit knowledge [5]. Leventon et al.
presented a method of incorporating shape information into
the image segmentation process [6]. Barra and Boire com-
bined medical expertise with fuzzy maps using information
fusion to segment anatomical structures in brain MRIs [7].
Niessen et al. presented an MRI brain segmentation method
which combines an edge dependent multiscale representation
with an intensity based linking scheme [8]. Shen el al. pre-
sented an adaptive deformable model for automatically seg-
menting brain structures from volumetric MR images [9].
Miscellaneous approaches have been applied to segment

volume from all above papers. We will apply learning meth-
ods which can utilize autonomous acquisition and integration
of knowledge to develop an automatic prior shape selection
process. The goal of this paper is to develop an automatic
brain structure segmentation method from 3D rodent brain
MRIs by extending the robust active shape models to incor-
porate an automatic prior shape selection process. The pro-
posed method first builds a set of priori shapes for each brain
structure. Then, by classifying the brain structures present
in a given image using a machine learning method (in sec-
tion 2.1), it quickly selects a set of prior shapes and con-
structs a composite model by combining the selected priori
shape models (in section 2.2). The composite model is auto-
matically initialized (in section 2.3) and then deformed to fit
to the corresponding brain structures using the active shape
model (ASM) framework with significant improvements (in
section 2.4). The method presented in this paper was specif-

Fig. 1. 3D mouse brain volume and its unfolded 2D slices.
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ically developed for segmentation of mouse brain structures
in 3D brain images. However, it is generally applicable to
any task involving deformable shape analysis of objects that
change their topological structures in a given dataset.

2. METHOD

2.1. Automatic prior shape selection

As shown in Fig. 1, if we unfold the 3D mouse brain volume
into 2D slices, we can see that the topology of the brain struc-
tures vary with the slice positions. According to experts [2],
these variations of brain structures can be classified as five
classes (see Fig. 2) and each class contains different combi-
nations of different brain structures. To classify brain images
into 5 classes, we specifically consider the following struc-
tures of the mouse brain: Cerebellum (S1), Neocortex (S2),
Corpus Callosum & External Capsule (S3), Caudate Putamen
(left: S4; right: S5), Hippocampus (left: S6; right: S7), Lat-
eral Ventricles (left front: S8; right front: S9; left rear: S10;
right rear: S11), Third Ventricle (S12) and Fourth Ventricle
(S13). All regions of interest were selected by experts and
were based on a stereotaxic rodent brain atlas [10]. Among
these component brain structures, class 1 (C1) contains S1,
S2, S3, S8, S9 and S13. Class 2 (C2) contains S1, S2, S3, S8,
S9, S12 and S13. Class 3 (C3) contains all structures except
S10 and S11. Class 4 (C4) contains all structures. Class 5
(C5) contains all structures except S1 and S3.
Given a slice, if we know which class it belongs to, we

can get proper prior shape information for further ASM seg-
mentation. In this paper, we use Support Vector Machines
(SVM) [11] to deal with this task of classification. SVM has
been known for its successes in many pattern recognition ap-
plications [12]. Its idea is first to project the input data into an
implicit feature space F , i.e., x ∈ RN → Φ(x) ∈ F with the
kernel trick, and then find the optimum decision hyper-plane
in F to maximize the margins between two classes. In im-
plementation, the kernel trick does not need to compute the
implicit feature Φ(x) explicitly and the dot product of two
implicit features Φ(x1) and Φ(x2) can be written as a kernel
function k(x1, x2). Given a sample x, its label predicted by
SVM is given by the following:

f(x) = sign(
n∑

i=1

yiaik(x, xi) + b)

where xi, i = 1, 2, ..., n are the training samples, yi =
{1,−1} represents the label of the training samples, the coef-
ficients ai and b are the solutions of a quadratic programming
problem. The training samples with non-zero a i are called
the support vectors [13].
There are several popular kernels. In our experiments,

we use the Gaussian Radial Basis Function as the kernel:
k(x1, x2) = exp(−γ ‖x1 − x2‖2). The classical SVM is a

Fig. 2. Five classes of mouse brain images based on the dif-
ferent brain structures present in the images

Fig. 3. The results of the coarse segmentation for automatic
and accurate initialization of the ASM.

typical binary classifier. In this paper, we adopt one-to-all
strategy to handle the multi-class problem.

2.2. Active shape models and their limitation

An active shape model represents the features of a shape
as the point distribution model (PDM) [14]. Given a set
of training images, the feature of interest in each image
is manually labeled with n landmark points and repre-
sented as a vector in 2n-dimensional space, i.e., x =<
x0, y0, x1, y1, ..., xn−1, yn−1 >. After aligning these vec-
tors into a common coordinate system, a set of orthogonal
bases P is computed with the principal component analysis.
Then, each aligned shape can be reconstructed as x = x̄+Pb,
where x̄ and b are the mean shape and the shape parameter
vector, respectively. This equation also allows us to search for
a new example of the shape in an unlabeled image by varying
b appropriately, often based on low-level image features such
as the gradients along normal directions to the boundary of
an initial shape toward the strongest edge in the image. Al-
though it has been used successfully in many applications,
ASM has two important limitations for the segmentation of
brain structures in MRI. In the next two sections, we will
address these limitations and propose methods to overcome
these drawbacks.

2.3. Automatic initialization of ASM

The major drawback of ASM for searching for a new example
of the shape in an unlabeled image is the initialization of the
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model. If the model is initialized too far from the feature of
interest, the process may fail. To automate the accurate ini-
tialization of the model, we first rapidly extract the ventricles
areas from unlabeled images by applying a series of thresh-
olding and morphological operators.
The coarse segmentation process is illustrated in Fig. 3.

The given images in top row are first normalized and thresh-
olded, using the 90% quantile intensity value of the normal-
ized image as the threshold value, to generate a binary images
shown in middle row. Then we applied a series of morpho-
logical operators to obtain the coarse segmentation of brain
structures as shown in bottom row. Note that our interest at
this step is not the accurate segmentation of the brain struc-
tures. The coarse brain structures obtained here are used only
to automate the accurate initialization of the shape model on
unlabeled images. We achieve the automatic and accurate ini-
tialization by aligning the centers of the shape models to the
centers of the segmented coarse brain structures.

2.4. Robust active shape models

Another limitation of ASM in finding an object in unlabeled
images is that it heavily relies on the low-level image features
to guide the search for the optimal positions of the feature
points. For example, the gradient descent search on the im-
age intensity profile has been widely used to move the model
points toward the strongest edge in the image [14]. How-
ever, this approach is not suitable for the accurate delineation
of Cerebellum of the brain in MRI since Cerebellum is in-
tensity non-uniformitywith stripes occlude structures and ap-
pear as the strongest edge (Fig. 1). We overcome this diffi-
culty by introducing a robust error function based on the M-
estimator [15].
Given an orthogonal basis P obtained in Sec. 2.2, the pro-

jectionC of a new example shapeX is given by C = P T dX ,
whereX = X̄ + dX and X̄ is the mean shape of the aligned
shapes from the training images. Using the projection C, we
can also find a corresponding shape as X̂ = X̄ + PC , in
which X̂ and PC approximates X and dX , respectively.
Therefore, instead of obtaining X by optimizing dX using
low-level image features only, our goal is to find the optimal
C by minimizing the following robust energy function:

Erpca(C) = ρ(‖dX − PC‖ , σ)

where, ρ(x, σ) = x2/(x2 + σ2) is the Geman-McClure error
function and σ is a scale parameter that controls the convex-
ity of the robust function. With an iterative gradient descent
search on E, we get:

C(n+1) = C(n) + λΔC

where, λ is a small constant that determines the step size and

ΔC =
∂Erpca

∂C
= −2P (dX − PC)

σ2

(‖dX − PC‖2 + σ2)2

Fig. 4. MR image of the brain with landmarks of brain struc-
tures superimposed of each class.

Fig. 5. 3D reconstruction of segmentation result.

By continuing the iterative process until
∥∥E(n+1) − E(n)

∥∥ <
ε , where ε is a preselected tolerance, we obtain the optimal
project C and a robust shape in the shape space as:

X̂ = X̄ + PC

The results of this process are illustrated in Fig. 4, where the
Cerebellum occluded by the strips are accurately segmented.

3. RESULTS

Six 4-month-oldmice were anesthetized with ketamine/xylazine
mixture (100mg/kg/10mg/kg) and placed inside a 9.4T MR
scanner [16]. Each mouse brain scan generated a 3D gra-
dient echo (GE) image volume acquired at high resolution
(50x50x50-micron isotropic resolution). The images of all
mice were segmented manually using the AMIRA software
environment by experts.
To test the proposed classification method, we randomly

sampled 50 patches for each image; in total, we generated
5000 training images (1000 images per class) and 3250 test-
ing images (class 1: 650, class 2: 750, class 3: 600, class 4:
600, class 5: 650). The mean successful rate of the multiple
classes of the testing data is 92.2%.
Thenwe automatically segmented all testing images using

the robust ASM method as described in Section 2.3 and 2.4.
Fig. 4 shows the automatic segmentation result and its 3D
reconstruction (Fig. 5). The ASM method encodes for each
structure of the brain that we want to segment the statisti-
cal variation of its shape and its appearance along the shape
boundaries. Table 1 shows the mean overlap ratios of struc-
tures of different classes of brain volume between the ground
truth and the ASM segmented images.
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Mean
overlap C1 C2 C3 C4 C5
ratio
S1 0.9887 0.9789 0.9643 0.9837 N/A
S2 0.9867 0.9764 0.9717 0.9623 0.9756
S3 0.6874 0.7462 0.5945 0.6390 N/A
S4 N/A N/A 0.8752 0.8546 0.8358
S5 N/A N/A 0.9043 0.8958 0.8680
S6 N/A N/A 0.8627 0.8745 0.8297
S7 N/A N/A 0.8519 0.8913 0.8473
S8 0.9877 0.9783 0.9794 0.9848 0.9736
S9 0.9852 0.9836 0.9755 0.9809 0.9741
S10 N/A N/A N/A 0.9786 0.9866
S11 N/A N/A N/A 0.9839 0.9742
S12 N/A 0.9655 0.9539 0.9678 0.9438
S13 0.9342 0.9434 0.9712 0.9509 0.9642

Table 1. Mean overlap ratios of structures of different classes
of brain volume between the ground truth and the ASM seg-
mented images. C1 to C5 are defined classes. S1 to S13 are
different brain structures.

4. CONCLUSION

We proposed a novel method for fully automated segmen-
tation of 3D mouse brain volume that is based on the ex-
tended robust active shape models by incorporating an au-
tomatic prior shape selection process. The automatic prior
shape selection process using support vector machines classi-
fies the 3D mouse brain volume into multiple classes corre-
sponding to the topological changes of brain structures. With
these promising results, the method can be used to provide a
high throughput automatic segmentation of rodent brains for
many different preclinical neuroscience applications.

5. REFERENCES

[1] A. Pitiot, H. Delingette, and P.M. Thompson, Medical
Image Systems: Technology and Applications, chapter
Automated Image Segmentation: Issues and Applica-
tions, Academic Press, 2004.

[2] V. Boronikolas, M. Michaelides, J. Zhou, G.J. Wang,
S. Blackband, S. Grant, D. Metaxas, N. Volkow, and
P.K. Thanos, “Validation of the active shape model for
automatic brain region segmentation,” IEEE Nuclear
Science Symposium and Medical Imaging Conference,
2006.

[3] R.W. McCarley, C.G. Wiblea, M. Frumina, Y. Hiraya-
sua, J.J. Levitta, I.A. Fischera, and M.E. Shenton, “Mri
anatomy of schizophrenia,” Biological Psychiatry, vol.
45, no. 9, pp. 1099–1119, 1999.

[4] O.T. Carmichael, H.A. Aizenstein, S.W. Davis, J.T.
Becker, P.M. Thompson, C.C. Meltzer, and Y. Liu,
“Atlas-based hippocampus segmentation in alzheimer’s
disease and mild cognitive impairment,” NeuroImage,
vol. 27, no. 4, pp. 979–990, 2005.

[5] A. Pitiot, H. Delingette, P.M. Thompson, and Ayache
N., “Expert knowledge-guided segmentation system for
brain mri,” NeuroImage, vol. 23, pp. s85–s96, 2004.

[6] M. Leventon, E. Grimson, and O. Faugeras, “Statisti-
cal shape influence in geodesic active contours,” IEEE
Proc. of Computer Vision and Pattern Recognition, pp.
4–11, 2000.

[7] V. Barra and J.Y. Boire, “Automatic segmentation of
subcortical brain structures in mr images using informa-
tion fusion,” IEEE transctions on medical imaging, vol.
20, no. 7, pp. 549–558, 2001.

[8] W.J. Niessen, K.L. Vincken, J. Weickert, B.M.T.H.
Romeny, and M.A. Viergever, “Multiscale segmenta-
tion of three-dimensional mr brain images,” Interna-
tional Journal of Computer Vision, vol. 31, no. 2, pp.
185–202, 1999.

[9] D. Shen, E.H. Herskovies, and C. Davatzikos, “An
adaptive-focus statistical shape model for segmentation
and shapemodeling of 3d brain structures,” IEEE Trans-
actions onMedical Imaging, vol. 20, no. 4, pp. 257–270,
2001.

[10] G. Paxinos and C. Watson, The Rat Brain in Stereotaxic
Coordinates, Academic Press, second edition edition,
1986.

[11] V.S. Cherkassky and F. Mulier, Learning from Data:
Concepts, Theory, and Methods, Wiley, 1998.

[12] R. Duda, P.E. Hart, and D.G. Stork, Pattern Classifica-
tion, 2000.

[13] E. Osuna, R. Freund, and Girosi F., Support Vector Ma-
chines: Training and Applications, Tech Report, AI
Lab, MIT, second edition edition, 1997.

[14] T. Cootes, C. Taylor, D. Cooper, and J. Graham, “Active
shape models-their training and application,” Computer
Vision and Image Understanding, vol. 61, no. 1, pp. 38–
59, 1995.

[15] F. De La Torre and M. Black, “A framework for robust
subspace learning,” International Journal of Computer
Vision, vol. 54, no. 1-3, pp. 117–142, 2003.

[16] P.K. Thanos,M.Michaelides, H. Benveniste, G.J. Wang,
and N.D. Volkow, “The effects of cocaine on regional
brain glucose metabolism is attenuated in dopamine
transporter knockout mice,” Synapse, vol. 62, pp. 319–
324, 2008.

64


